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Abstract—We propose a novel hybrid loss for multiclass and structured prediction problems that is a convex combination of log loss for
Conditional Random Fields (CRFs) and a multiclass hinge loss for Support Vector Machines (SVMs). We provide a sufficient condition
for when the hybrid loss is Fisher consistent for classification. This condition depends on a measure of dominance between labels –
specifically, the gap in per observation probabilities between the most likely labels. We also prove Fisher consistency is necessary for
parametric consistency when learning models such as CRFs. Moreover, we give PAC-Bayes bounds on the hybrid loss.
We demonstrate empirically that the hybrid loss typically performs as least as well as – and often better than – both of its constituent
losses on variety of tasks. Applications on variety of multiclass and structured prediction tasks such as Plant Segmentation, Named
Entity Recognition, Joint Image Object Categorization etc. demonstrate the excellence of the proposed hybrid loss. In doing so we also
provide an empirical comparison of the efficacy of probabilistic and margin based approaches to multiclass and structured prediction
and the effects of label dominance on these results.

Index Terms—Conditional Random Fields, Support Vector Machines, Hybrid Loss, Fisher Consistency, PAC-Bayes Bounds, Structured
Learning
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1 INTRODUCTION

COnditional Random Fields (CRFs) and Support Vec-
tor Machines (SVMs) can be seen as representative

of two different approaches to classification problems.
The former is purely probabilistic – the conditional prob-
ability of classes given each observation is explicitly
modelled – while the latter is purely discriminative –
classification is performed without any attempt to model
probabilities. Both approaches have their strengths and
weaknesses. CRFs [12, 22] are known to yield the Bayes
optimal solution asymptomatically but often require a
large number of training examples to do accurate mod-
elling. In contrast, SVMs make more efficient use of
training examples but are known to be inconsistent when
there are more than two classes [25, 15].

Despite their differences, CRFs and SVMs appear very
similar when viewed as optimisation problems. The
most salient difference is the loss used by each: CRFs
are trained using a log loss while SVMs typically use a
hinge loss. In an attempt to capitalise on their relative
strengths and avoid their weaknesses, we propose a
novel hybrid loss which “blends” the two losses. After
some background (§2) we provide the following analysis:
We argue that Fisher Consistency for Classification (FCC)
– a.k.a. classification calibration – is too coarse a no-
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tion and introduce a distribution-dependent refinement
called Conditional Fisher Consistency for Classification
(§3). We prove the hybrid loss is conditionally FCC
and give a noise condition that relates the hybrid loss’s
mixture parameter to a margin-like property of the data
distribution (§3.1). We then show that, although FCC
is effectively a non-parametric condition, it is also a
necessary condition for consistent risk minimisation us-
ing parametric models (§3.2). Finally, we empirically test
the hybrid loss on various domains including multiclass
classification, Chunking, Named Entity Recognition and
Joint Image Object Categorisation and show it consis-
tently performs as least as well as – and often better
than – both of its constituent losses(§5).

2 LOSSES FOR MULTICLASS PREDICTION

In classification problems observations x ∈ X are paired
with labels y ∈ Y via some joint distribution D over X×Y.
We will write D(x, y) for the joint probability and D(y|x)
for the conditional probability of y given x. Since the
labels y are finite and discrete we will also use the nota-
tion Dy(x) for the conditional probability to emphasise
that distributions over Y can be thought of as vectors
in Rk for k = |Y |. We will use q to denote distributions
over Y when the observations x ∈ X are irrelevant. When
the number of possible labels k = |Y | > 2 we call the
classification problem a multiclass classification problem.

2.1 From Multiclass to Structured Prediction
A special case of this type of problem is structured
prediction where the set of labels Y has some combi-
natorial structure that typically means k is very large
[1]. In structured prediction, each output y involves
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relationships among ‘sub-components’ of y. For example,
the label of a pixel in an image depends on the label of
neighbouring pixels. That’s where the term ‘structured’
comes from. However, different y’s are typically not
assumed to possess any joint structure (i.e., it is typically
assumed that the data is drawn from X×Y). This is
why structured prediction is no different in essence than
multiclass classification. As seen in the experimental
section below a variety of problems, such as text tagging,
can be construed as structured prediction problems.

Given m training observations S = {(xi, yi)}mi=1 drawn
i.i.d. from D, the aim of the learner is to produce a
predictor h : X → Y that minimises the misclassification
error eD(h) = PD [h(x) 6= y]. Since the true distribution
is unknown, an approximate solution to this problem is
typically found by minimising a regularised empirical
estimate of the risk for a surrogate loss `. Examples of
surrogate losses will be discussed below.

Once a loss is specified, a solution is found by solving

min
f

1

m

m∑
i=1

`(f(xi), yi) + Ω(f) (1)

where each model f : X → Rk assigns a vector of
scores f(x) to each observation and the regulariser Ω(f)
penalises overly complex functions. A model f found in
this way can be transformed into a predictor by defining
hf (x) = argmaxy∈Y fy(x). We will overload the definition
of misclassification error and sometimes write eD(f) as
shorthand for eD(hf ).

In structured prediction, the models are usually speci-
fied in terms of a parameter vector w ∈ Rn and a feature
map φ : X×Y → Rn by defining fy(x;w) = 〈w, φ(x, y)〉
and in this case the regulariser is Ω(f) = λ

2 ‖w‖
2 for

some choice of λ ∈ R. This is the framework used to
implement the SVMs and CRFs used in the experiments
described in Section 5. Although much of our analysis
does not assume any particular parametric model, we
explicitly discuss the implications of doing so in §3.2.

A common surrogate loss for multiclass problems is
a generalisation of the binary class hinge loss used for
Support Vector Machines [8]:

`H(f, y) = [1−M(f, y)]+ (2)

where [z]+ = z for z > 0 and is 0 otherwise, and
M(f, y) = fy − maxy′ 6=y f

′
y is the margin for the vector

f ∈ Rk. Intuitively, the hinge loss is minimised by
models that not only classify observations correctly but
also maximise the difference between the highest and
second highest scores assigned to the labels.

While there are other, consistent losses for SVMs [25,
15], these cannot scale up to structured estimations due
to computational issues. For example, the multiclass
hinge loss

∑
j 6=y[1 + fj(x)]+ is shown to be consistent

in [15]. However, it requires evaluating f on all possible
labels except the true y. This is intractable for structured
estimation where the possible labels grow exponentially
with the size of the structured output. Since the other

known and consistent multiclass hinge losses have simi-
lar intractability we will only focus on the margin-based
loss `H which can be evaluated quickly using techniques
from dynamic programming, linear programming etc.
[26, 24, 1].

2.2 Probabilistic Models and Losses
The scores given to labels by a general model f : X→ Rk
can be transformed into a conditional probability distri-
bution p(x; f) ∈ [0, 1]k by letting

py(x; f) =
exp(fy(x))∑
y∈Y exp(fy(x))

. (3)

It is easy to show that under this interpretation the
hinge loss for a probabilistic model p = p(·; f) is given
by

`H(p, y) =

[
1− ln

py
maxy′ 6=y py′

]
+

Another well known loss for probabilistic models,
such as CRFs, is the log loss

`L(p, y) = − ln py.

This loss penalises models that assign low probability
to likely instances labels and, implicitly, that assign high
probability to unlikely labels.

We now propose a novel hybrid loss for probabilistic
models that is a convex combination of the hinge and
log losses

`α(p, y) = α`L(p, y) + (1− α)`H(p, y) (4)

where mixture of the two losses is controlled by a
parameter α ∈ [0, 1]. Setting α = 1 or α = 0 recovers
the log loss or hinge loss, respectively. The intention is
that choosing α close to 0 will emphasise having the
maximum gap between the largest and second largest
label probabilities while an α close to 1 will force models
to prefer accurate probability assessments over strong
classification.

3 FISHER CONSISTENCY FOR CLASSIFICA-
TION

A desirable property for a loss is that, given enough
data, the models obtained by minimising the loss at each
observation will make predictions that are consistent
with the true label probabilities at each observation.

Formally, we say vector f ∈ R|Y | is aligned with a
distribution q over Y whenever maximisers of f are
also maximisers for q. That is, when argmaxy∈Y fy ⊆
argmaxy∈Y qy. If, for all label distributions q, minimising
the conditional risk L(f) = Ey∼q[`(f, y)] for a loss `
yields a vector f∗ aligned with q we will say ` is
Fisher consistent for classification (FCC) 1 – or classification

1. Note that the Fisher consistency for classification is weaker than
Fisher consistency for density estimation. The former requires the same
prediction only, while the latter requires the estimated density is the
same as the true data distribution. In this paper, we focus on the former
only.
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calibrated [25]. This is an important property for losses
since it is equivalent to the asymptotic consistency of
the empirical risk minimiser for that loss [25, Theorem
2].

The standard multiclass hinge loss `H is known to be
inconsistent for classification when there are more than
two classes [15, 25]. The analysis in [15] shows that the
hinge loss is inconsistent whenever there is an instance
x with a non-dominant distribution – that is, Dy(x) <
1
2 for all y ∈ Y. Conversely, A distribution is dominant
for an instance x if there is some y with Dy(x) > 1

2 . In
contrast, the log loss used to train non-parametric CRFs
is Fisher consistent for probability estimation – that is,
the associated risk is minimised by the true conditional
distribution – and thus `C is FCC since the minimising
distribution is equal to D(x) and thus aligned with D(x).

3.1 Conditional Consistency of the Hybrid Loss
In order to analyse the consistency of the hybrid loss we
introduce a more refined notion of Fisher consistency
that takes into account the true distribution of class
labels. If q = (q1, . . . , qk) is a distribution over the labels
Y then we say the loss ` is conditionally FCC with respect
to q whenever minimising the conditional risk w.r.t.
q, Lq(f) = Ey∼q [`(f, y)] yields a predictor f∗ that is
consistent with q. Of course, if a loss ` is conditionally
FCC w.r.t. q for all q it is, by definition, (unconditionally)
FCC.

Theorem 1: Let q = (q1, . . . , qk) be a distribution over
labels and let y1 = maxy qy and y2 = maxy 6=y1 qy be
the two most likely labels. Then the hybrid loss `α is
conditionally FCC for q whenever qy1 >

1
2 or

α > 1− qy1 − qy2
1− 2qy1

. (5)

Proof: We use Lα(p,D) = Ey∼D [`α(p, y)] and ∆(Y) to
denote distributions over Y. Since we a free to permute
labels within Y we will assume without loss of generality
that D1 = maxy∈YDy and D2 = maxy 6=1Dy . The proof
now proceeds by contradiction and assumes there is
some minimiser p = argminq∈∆(Y) Lα(q,D) that is not
aligned with D. That is, there is some y∗ 6= 1 such
that py∗ ≥ p1. For simplicity, and again without loss of
generality, we will assume y∗ = 2.

The first case to consider is when p2 is a maximum
and p1 < p2. Here we construct a q that “flips” the values
of p1 and p2 and leaves all the values unchanged. That
is, q1 = p2, q2 = p1 and qy = py for all y = 3, . . . , k.
Intuitively, this new point is closer to D and therefore
the CRF component of the loss will be reduced while the
SVM loss won’t increase. The difference in conditional
risks satisfies

Lα(p,D)− Lα(q,D) =

k∑
y=1

Dy.(`α(p, y)− `α(q, y))

= D1.(`α(p, 1)− `α(q, 1))

+D2.(`α(p, 2)− `α(q, 2))

= (D1 −D2)(`α(q, 2)− `α(q, 1))

since `α(p, 1) = `α(q, 2) and `α(p, 2) = `α(q, 1) and the
other terms cancel by construction. As D1 − D2 > 0
by assumption, all that is required now is to show that
`α(q, 2) − `α(q, 1) = α ln q1

q2
+ (1 − α)(`H(q, 2) − `H(q, 1))

is strictly positive.
Since q1 > qy for y 6= 1 we have ln q1

q2
> 0, `H(q, 2) =[

1− ln q2
q1

]
+
> 1, and `H(q, 1) =

[
1− ln q1

qy

]
+
< 1, and so

`H(q, 2)−`H(q, 1) > 1−1 = 0. Thus, `α(q, 2)−`α(q, 1) > 0
as required.

Now suppose that p2 = p1 is a maximum. In this
case we show a slight perturbation q = (p1 + ε, p2 −
ε, p3, . . . , pk) yields a lower for ε > 0. For y 6= 1, 2 we
have `L(p, y)− `(q, y) = 0 and since p2 > py and q1 > qy
thus `H(p, y) − `H(q, y) = 1 − ln

py
p2

+ 1 − ln
qy
q1

= ln p2
q1
>

1 − q1
p2

= − ε
p2

since − lnx > 1 − x for x ∈ (0, 1) and
q1 = p1 + ε = p2 + ε. Therefore

`α(p, y)− `α(q, y) > −ε (1− α)

p1
(6)

When y = 1, `L(p, 1)− `L(q, 1) = − ln p1
q1
> q1−p1

p1
= ε

p1
and `H(p, 1)− `H(q, 1) = (1− ln p1

p2
)− (1− ln q1

q2
) = ln q1

q2
=

ln p1+ε
p1−ε since p1 = p2. Thus `H(p, 1)−`H(q, 1) > 1− p1−ε

p1+ε =
2ε
p1+ε . And so

`α(p, y)− `α(q, y) > ε

[
α

p1
+

2(1− α)

p1 + ε

]
(7)

Finally, when y = 2 we have `L(p, 2) − `L(q, 2) =
− ln p2

q2
> q2−p2

p2
= −ε

p1
and `H(p, 2)−`H(q, 2) = (1−ln p2

p1
)−

(1− ln q2
q1

) = ln q2
q1
> 1− q1

q2
= −2ε

p1+ε . Thus,

`α(p, 2)− `α(q, 2) > −ε
[
α

p1
+

2(1− α)

p1 + ε

]
. (8)

Putting the inequalities (6), (7) and (8) together yields

lim
ε→0

Lα(p,D)− Lα(q,D)

ε

> lim
ε→0

(D1 −D2)

[
α

p1
+

2(1− α)

p1 + ε

]
−

k∑
y=3

Dy
1− α
p1

=
D1 −D2

p1
(2− α)− 1−D1 −D2

p1
(1− α)

=
1

p1
(D1 −D2 + (1− α)(2D1 − 1)).

Observing that since D1 > D2, when D1 >
1
2 the final

term is positive without any constraint on α and when
D1 <

1
2 the difference in risks is positive whenever

α > 1− D1 −D2

1− 2D1
(9)

completes the proof.
Theorem 1 can be inverted and interpreted as a con-

straint on the conditional distributions of some data
distribution D such that a hybrid loss with parameter α
will yield consistent predictions. Specifically, the hybrid
loss will be consistent if, for all x ∈ X such that q = D(x)
has no dominant label (i.e., Dy(x) ≤ 1

2 for all y ∈ Y), the
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gap Dy1(x)−Dy2(x) between the top two probabilities is
larger than (1−α)(1−2Dy1(x)). When this is not the case
for some x, the classification problem for that instance is,
in some sense, too difficult to disambiguate. In this sense,
the bound can be seen as a property on distributions akin
to Tsybakov’s noise condition [6]. Making this analogy
precise is the focus of ongoing work.

3.2 Parametric Consistency

Since Fisher consistency is defined point-wise on ob-
servations, it is not directly applicable to parametric
models as these enforce inter-observational constraints
(e.g. smoothness). Abstractly, assuming parametric hy-
potheses can be seen as a restriction over the space of
allowable scoring functions. When learning parametric
models, risks are minimised over some subset F of
functions from X→ RY instead of all possible functions.
We now show that, given some weak assumptions on
the hypothesis class F, a loss being FCC is a necessary
condition if the loss is also to be F-consistent.

We say a loss ` is F-consistent if, for any distribution,
minimising its associated risk over F yields a hypoth-
esis with minimal 0-1 loss in F.2 Recall that the risk
of a hypothesis f ∈ F associated with a loss ` and
distribution D over X×Y is LD(f) = ED [`(y, f(x))]
and its 0-1 risk or misclassification error is eD(f) =
PD
[
y 6= argmaxy′∈Y fy′(x)

]
. Formally then, given a func-

tion class F we say ` is F-consistent if, for all distributions
D,

LD(f∗) = inf
f∈F

LD(f) =⇒ eD(f∗) = inf
f∈F

eD(f). (10)

We need a relatively weak condition on function
classes F to state our theorem. We say a class F is regular
if the follow two properties hold: 1) For any g ∈ RY

there exists an x ∈ X and an f ∈ F so that f(x) = g;
and 2) For any x ∈ X and y ∈ Y there exists an f ∈ F so
that y = argmaxy′∈Y fy′(x). Intuitively, the first condition
says that for any distribution over labels there must be
a function in the class which models it perfectly on
some point in the input space. The second condition
requires that any mode can be modelled on any input.
Importantly, these properties are fairly weak in that they
do not say anything about the constraints a function
class might put on relationships between distributions
modelled on different inputs.

Theorem 2: For regular function classes F any loss that
is F-consistent is necessarily also Fisher Consistent for
Classification (FCC).

Proof: The proof is by contradiction. We assume we
have a regular function class F and a loss ` which is
F-consistent but not FCC. That is, (10) holds for ` but
there exists a distribution p over Y such that there is a

2. While this is simpler and stronger than the usual asymptotic no-
tation of consistency [16] it most readily relates to FCC and suffices for
our discussion since we are only establishing that FCC is a necessary
condition.

g ∈ RY which minimises the conditional risk Lq(g) but
argmaxy∈Y gy 6= argmaxy∈Y qy .

By the assumption of the regularity of F there is an
x ∈ X and a f ∈ F so that f(x) = g. We now define a
distribution D over X×Y that puts all its mass on the
set {x} × Y so that D(x, y) = py . Since this distribution
is concentrated on a single x its full risk and conditional
risk on x are the same. That is, LD(·) = Lp(·). Thus,

LD(f) = Lp(f) = inf
f ′∈F

Lp(f
′) = inf

f ′∈F
LD(f ′)

By the assumption of F-consistency, since f is a min-
imiser of LD it must also minimise eD. Once again,
the construction of D means that eD(f) = ep(g) =
Py∼p

[
y 6= argmaxy′∈Y gy

]
= 1 − pyg where yg =

argmaxy gy is the label predicted by g. However,

eD(f) = ep(g) = 1− pyg > 1− py∗

since y∗ = argmaxy py 6= argmax gy = yg .
By the second regularity property, there must also

be an f̂ ∈ F such that argmaxy f̂y(x) = y∗ so that
eD(f) > inff ′∈F eD(f ′) = eD(f̂) = 1 − py∗ . Thus, we
have shown that there exists a distribution D so f ∈ F

is a minimiser of the risk LD but is not a minimiser
of the misclassification rate eD which contradicts the
assumption of the F-consistency of `. Therefore, ` must
be FCC.

4 GENERALISATION BOUND

We now give a PAC-Bayesian bound [18] for the gen-
eralisation error eD of the hybrid model that can be
specialised to recover a bound for the multiclass hinge
loss.

Theorem 3 (Generalisation Margin Bound): For any data
distribution D, for any prior P over w, for any w, any
δ ∈ (0, 1] and for any γ > 0 and any α ∈ [0, 1), with
probability at least 1 − δ over random samples S from
D with m instances, there exists a constant c, such that

eD ≤P(x,y)∼S(EQ(M(w′, y)) ≤ γ)

+O


√

||w||2
2c(1−α)γ2 ln(m|Y |) + lnm+ ln δ−1

m

 .

Proof: By choosing the weight prior
P (w) = 1

Z exp(−‖w‖
2

2 ) and the posterior
Q(w′) = 1

Z exp(−‖w
′−w‖2
2 ), one can show

eD = PD(EQM(w′, y) ≤ 0) by symmetry argument
proposed in [14, 17]. Applying the PAC-Bayes margin
bound [13, 27] and knowing the margin threshold
γ′ ≤ c(1−α)γ and KL(Q||P ) = ||w||2

2 yields the theorem.

Setting α = 0 in the above bound recovers a margin
bound for SVMs (see [13] for an averaging classifiers of
SVMs, and [27] for structured case). Unfortunately, one
cannot set α = 1 to achieve a PAC-Bayes bound for a
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pure log loss classifier in this manner due the the (1 −
α)−1 dependence. However, to our knowledge, we are
not aware of any PAC-Bayes bound on the generalisation
error for log loss.

A similar, alternative bound to capture how much the
margin violates for the hybrid loss is as follows:

Theorem 4 (Margin Violation Bound): For any data dis-
tribution D, for any prior P over w, for any δ ∈ (0, 1] and
α ∈ [0, 1) and for any γ ≥ 0, for any w, with probability
at least 1 − δ over random samples S from D with m
instances, we have

ED
[(
γ −M(w, y)

)
+

]
≤ 1

m

m∑
i=1

(
γ −M(w, yi)

)
+

+
1

(1− α)

α√ 1

m
+

√
ln 1

P (w) + lnA(α,w) + ln 1
δ(1−e−2)

2m

 ,

where

R(α,w) =αED
[
− ln p(y|x;w)

]
+ (1− α)ED

[(
γ −M(w, y)

)
+

]
,

RS(α,w) =
[
α

∑m
i=1− ln p(yi|xi;w)

m

+ (1− α)

∑m
i=1

(
γ −M(w, yi)

)
+

m

]
,

A(α,w) =Es∼Dm e2m(R(α,w)−RS(α,w))2 .

Here A is upper bounded independently of D. For
example, for a zero-one loss, it is upper bounded by m+1
(see [9]). The theorem is a special case of Theorem 6 in
Appendix A.

The theorem gives a bound on the true margin vi-
olation of the hybrid model. It can be used to access
how reliable a large margin threshold is — larger margin
threshold implies a tighter error bound in Theorem 4.

5 EXPERIMENTS

The analysis of the hybrid loss suggests it should be
able to outperform the hinge loss due to its improved
consistency on distributions with non-dominant labels.
Furthermore, it should also make more efficient use
of data than log loss on distributions with dominant
labels. These hypotheses were confirmed by applying the
hybrid, log and hinge losses to a number of synthetic
multiclass data sets in which the data set size and
proportion of examples with non-dominant labels are
carefully controlled.

We also compared the hybrid loss with the log and
hinge losses on several real structured estimation prob-
lems and observed that the hybrid loss regularly outper-
forms the other losses and consistently performs at least
as well as the better of the log and hinge losses on any
problem.

2 4 6 8 10
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0.7

0.8

0.9

1

tr
ai

ni
ng

 e
rr

or

number of classes

SVM
CRF and Hybrid

Fig. 1. Training Error with various number of classes. α =
0.5 for the hybrid loss.

5.1 Multiclass Classification

Two types of multiclass simulations were performed.
The first examined the performances of the hybrid, log
and hinge losses when no observations had a dominant
label. That is all observations were drawn from a D with
Dy(x) < 1/2 for all labels y. The second experiment
considered distributions with a controlled mixture of
observations with dominant and non-dominant labels.

5.1.1 Non-dominant Distributions
To make the experiment as simple as possible, we consid-
ered an observation space of size |X | = 1 and focused on
varying the number of labels and their probabilities. The
label set Y took the sizes |Y | = 3, 4, 5, . . . , 10. One label
y∗ ∈ Y was assigned probability Dy∗(x) = 0.46 and the
remainder are given an equal portion of 0.54 (e.g., in the
3 class case the other labels each have probability 0.27,
and in the 10 class case, 0.06). Note that this means for all
the label set sizes, the gap Dy∗(x)−Dy(x) is at least 0.19
which is always greater than (1−α)(1−2Dy∗(x)) = 0.04
so the hybrid consistency condition (5) is always met.

Features were a constant value in R2 as were the
parameter vectors wy ∈ R2 for y ∈ Y. Models were
found using LBFGS [5]. The resulting training errors for
hinge, log and hybrid losses are plotted in Figure 1 as a
function of the number of labels. As we can clearly see,
the hinge loss error increases as the number of classes
increases, whereas the errors for the log and the hybrid
losses remain a constant (1 − Dy∗(x)), in concordance
with the consistency analysis.

5.1.2 Mix of Non-dominant and Dominant Distributions
The second synthetic experiment examined how the
three losses performed given various training set sizes
(denoted by m) and various proportions of instances
with non-dominant distributions (denoted by ρ).

We generated 60 different data sets, all with Y =
{1, 2, 3, 4, 5}, in the following manner: Instances came
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(a) Hybrid v.s. Hinge (31/15)
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Fig. 2. Performance of the hybrid, hinge, and log losses on non-dominant/dominant mixtures. Points denote pairs of
test accuracies for models trained on one of 60 data sets using the losses named on the axes. Score (a/b) denotes
the vertical loss with a wins and b losses (ties not counted).

from either a non-dominant class distribution or a dom-
inant class distribution. In the non-dominant class case,
x ∈ R100 is set to a predefined, constant, non-zero vector
and its label distribution is D1(x) = 0.4 and Dy(x) = 0.15
for y > 1. In the dominant case, each dimension xi was
drawn from a normal distribution N(µ = 1 + y, σ = 0.6)
depending on the class y = 1, . . . , 5. The proportion ρ
ranged over 10 values ρ = 0.1, 0.2, 0.3, . . . , 1 and for each
ρ, test and validation sets of size 1000 were generated.
Training set sizes of m = 30, 60, 100, 300, 600, 1000 were
used for each ρ value for a total of 60 training sets. The
optimal regularisation parameter λ and hybrid loss pa-
rameter α were selected using the validation set for each
loss on each training set. Then models with parameters
wy ∈ R100 for y ∈ Y were found using LBFGS [5] for
each of the three losses on each of the 60 training sets
and then assessed using the test set.

The results are summarised in Figure 2. Each point
shows the test accuracy for a pair of losses. The pre-
dominance of points above the diagonal lines in a) and b)
show that the hybrid loss outperforms the hinge loss and
the log loss in most of the data sets. while the log and
hinge losses perform competitively against each other.

5.1.3 Plant Segmentation
Here we consider a real world problem for monitoring
plants in a controlled botany laboratory environment
where botanists want to record and track the details of
the growth of plants in an automated manner. Plants are
rotating around several cameras, thus pictures from dif-
ferent angles are obtained at different times. Segmenting
plants from their background is a fundamental step for
subsequent tasks such as automatic matching, tracking,
measuring and 3D modelling. Plant segmentation is
essentially a classification problem — an image pixel is
either on the plant (labelled as 1) or not (labelled as
−1). Assigning labels {±1} to pixels can be done via
energy minimisation such as graph cut [4, 3, 10], which
often requires to set parameters manually. To reduce
human interference and make use of the large amount
of available data, we will use supervised learning that
can automatically determine these parameters.

The botany laboratory provided 10 manually labelled
images with a resolution of 1280× 960 pixels which we
down-sampled to 320×240. For each pixel of the down-
sampled images, we extracted features x ∈ R9 where
x = (r, g, b, gvr, ghr, gvg, ghg, gvb, ghb). Here, r, g, b are the
pixel values in RGB channels, gvr, ghr are vertical and
horizontal gradients determined by a 3×3 Sobel operator
[20] on the R (red) channel (see Figure 3(c) and 3(d)).
Likewise, gvg, ghg, gvb, ghb are vertical and horizontal
gradients on the other channels. The 10 images were
split into 3 sets: training (4 images), validation (3 images)
and test sets (3 images). All three losses (hinge, log
and hybrid ) were trained on 4 different data sets with
features derived from 1 image, 2 images, 3 images and
4 images before being run on the the validation set (3
images) and the test set (3 images). A example of one
of the training images is shown in Figure 3(a) with its
label depicted in Figure 3(e). Here we see that some thin
parts of plants are not labelled as the plant — e.g. part
of the right bottom leaf in Figure 3(a) is mislabelled as
background. The mislabelled pixels are considered noise.
We expect an ideal classifier to be robust to a certain
degree of noise since labelling every pixel accurately
is impractical due to human error. As seen in Figure
3(f),3(g),3(h), the supervised learning classifiers for the
three losses recover the mislabelled leaf with the correct
prediction.

As an alternative to supervised learning, we consider
the widely used method of graph cut energy minimisa-
tion for classification [4, 3, 10]. This approach is used to
rectify shortcomings of traditional edge detectors such as
the Sobel operator which may not be able to distinguish
the edge of plants and the edges of the wall and the
vase (see Figure 3(b)). This technique assigns labels to
each pixel from a predefined set of classes of size k.
We ran graph cut3 with and and have presented the
results in Figure 4(b), 4(c) and 4(d). Ideally, one should
let k = 2, because there are two classes — a pixel either
belongs to the plant or to the background. However,

3. the code can be downloaded from http://www.wisdom.
weizmann.ac.il/∼bagon/matlab code/GCmex1.3.tar.gz
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(a) Train Image (b) Sobel Edge (c) Sobel Vertical Gradient (d) Sobel Horizontal Gradient

(e) Train Label (f) Hinge Segmentation (g) Log Segmentation (h) Hybrid Segmentation

Fig. 3. Illustration of the supervised learning for plant segmentation. The results of sobel operator are done on on the
red channel. Similar results are obtained on other channels. The gradients have been enhanced by a factor of 10 for
visualisation purpose. A 9-dimensional vector consisting of RGB pixels, sobel gradients on all channels represents the
feature of each pixel. The features are used for training and predicting labels for all pixels. The segmentation results
by 3 losses are shown in (f),(g),(h).

(a) Validation Image (b) Graph Cut k=2 (c) Graph Cut k = 3 (d) Graph Cut k =4

Fig. 4. Graph Cut results on a plant image. One needs to pre-specify the number of classes denoted by k for graph
cut. Here we let k = 2, 3, 4. Ideally k = 2 for there are only plant and the background. However, graph cut yields poor
result when k = 2. Even increasing k up to 4, there still are some isolated segments are mis-classified as plant (e.g.
see the bottom of the vase and the two small dots in the right top area).

graph cut may yield poor result with k = 2 (see Fig-
ure 4(b)). However, to make the graph cut approach
more competitive, we increased the number of classes
to k = 3 and 4. Unfortunately, even with k = 4, there
still are some isolated segments which are misclassified
as plant — for example, the bottom of the vase and

the two small dots in the right top area. As well as
these shortcomings in its performance, using graph cut
for inference has other undesirable properties relative to
supervised classification. Choosing the best k for good
segmentation and merging the results requires some care
as does the definition of the energy function. Also, unlike
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TABLE 1
Accuracy on plant segmentation. I: the number of training images. m: the number of training examples/pixels. Loss:

choice of loss functions. Acc Valid: the accuracy on the validation set. Acc Test i: the accuracy on i-th test image. The
largest accuracies among 3 losses are in boldface.

I m Loss Acc Valid Acc Test 1 Acc Test 2 Acc Test 3
Hinge 99.12 99.43 98.26 99.10

1 76800 Log 99.12 99.45 98.28 99.10
Hybrid 99.13 99.42 98.24 99.08
Hinge 99.12 99.37 98.14 99.11

2 153600 Log 99.12 99.36 98.09 99.11
Hybrid 99.13 99.40 98.21 99.11
Hinge 99.12 99.41 98.21 99.10

3 230400 Log 99.12 99.39 98.17 99.10
Hybrid 99.13 99.43 98.28 99.10
Hinge 99.12 99.46 98.29 99.10

4 307200 Log 99.11 99.38 98.14 99.10
Hybrid 99.13 99.48 98.34 99.09

supervised learning, graph cut does not fully exploit the
label information available in the training data.

We assume (x, y) pairs are drawn i.i.d. from a fixed
but unknown distribution D(x, y) and model py(x; f)
as (3) where fy(x;w) = 〈w, φ(x, y)〉. The task is now to
learn a good parameter w that can assign probabilities
consistent with the underlying distribution D. We train 3
losses on 4 training sets (i.e. with 1 image, ... , 4 images)
by LBFGS [5]. Once again, the optimal regularisation
parameter λ and hybrid loss parameter α were selected
using the validation set for each loss on each training
set. We report the results in Table 1. As can been seen,
when we train on 1 image (i.e. 76800 examples), the log
loss slightly outperforms the hinge loss and the hybrid
loss. As we increase the training data size the hybrid
loss starts outperforming the other two losses. Also, with
increased training size, the overall test accuracy of the
hybrid loss is improving. This suggests when we have
more training images the performance could be further
improved. Since the reported accuracy is quite high for
all methods, large additive improvements in accuracy
are impossible. However, if we consider when accuracy
goes from 99.36% to 99.40%, the error goes from 0.64%
to 0.60% which is a relative decrease (i.e. improvement)
of 0.04/0.64 = 6.25%.

From Theorem 3 we know that, with probability at
least 99.9% (i.e. δ = 0.001), the term within the big O
notation is tight — it is 0.0198, 0.0143, 0.0118, 0.0103 for
1 to 4 images respectively, evaluated with γ = 1, ‖w‖ =
1, c = 1, α = 0.5, k = 2. This may explain why the test
accuracies on different sets are quite stable (around 99%).

Note that graph cut uses the correlation between
neighbouring pixels, whereas the supervised learning
method treats each pixel i.i.d. ignoring the within image
dependency. To model the within image dependency,
we could model an entire image as x instead of per
pixel. However, this model would be difficult to learn
as the higher order parameter space would be very
large. Moreover, it will require a much larger amount
of training images to estimate the model with a tight
generalisation bound (see Theorem 3) since k = 276800 —

the number of possible pixel labelling for a single image
— is enormous. Tractable structured estimation for the
plant segmentation problem is ongoing research.

5.2 Structured Estimation

Unlike the general multiclass case, structured estimation
problems have a higher chance of non-dominant dis-
tributions because of the very large number of labels
as well as ties or ambiguity regarding those labels. For
example, in text chunking, changing the tag one phrase
while leaving the rest unchanged should not drastically
change the probability predictions – especially when
there are ambiguities. Because of the prevalence of non-
dominant distributions, we expect that training models
using a hinge loss to perform poorly on these problems
relative to training with hybrid or log losses.

5.2.1 CONLL2000 Text Chunking
Our first structured estimation experiment is carried
out on the CONLL2000 text chunking task [7]. The
data set has 8936 training sentences and 2012 testing
sentences with 106978 and 23852 phrases (a.k.a. chunks)
respectively. The task is to divide a text into syntactically
correlated parts of words such as noun phrases, verb
phrases, and so on. For a sentence with L chunks, its
label consists of the tagging sequence of all its chunks,
i.e. y = (y1, y2, . . . , yL), where yi is the chunking tag
for chunk i. As commonly used in this task, the label
y is modelled as a 1D Markov chain to account for the
dependency between adjacent chunking tags (yji , y

j+1
i )

given observation xi. Clearly, the model has exponen-
tially many possible labels, which suggests there are
many non-dominant classes.

Since the true underlying distribution is unknown,
we train a CRF4 on the training set and then apply
the trained model to both testing and training datasets
to get an estimate of the conditional distributions for
each instance. We sort the sentences xi from highest

4. using the feature template from the CRF++ toolkit [11], and the
CRF code from Leon Bottou [2].
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Fig. 5. Estimated probabilities of the true label Dyi(xi) and most likely label Dy∗i
(xi). Sentences are sorted according

to Dyi(xi) and Dy∗i
(xi) respectively in ascending order. D = 1/2 is shown as the straight black dot line. About 700

sentences out of 2012 in the testing set and 2000 sentences out of 8936 in the training set have no dominant class.

TABLE 2
Accuracy, precision, recall and F1 Score on the CONLL2000 text chunking task.

Train Portion Loss Accuracy Precision Recall F1 Score
Hinge 91.14 85.31 85.52 85.41

0.1 Log 92.05 87.04 87.01 87.02
Hybrid 92.07 87.17 86.93 87.05
Hinge 94.61 91.23 91.37 91.30

1 Log 95.10 92.32 91.97 92.15
Hybrid 95.11 92.35 92.00 92.17

to lowest estimated probability on the true chunking
label yi given xi. The result is plotted in Figure 5, from
which we observe the existence of many non-dominant
distributions — about 1/3 of the testing sentences and
about 1/4 of the training sentences.

We split the data into 3 parts: training (20%), testing
(40%) and validation (40%). The regularisation parame-
ter λ and the weight α were determined via parameter
selection using the validation set. To see the performance
with different training sizes, we took part of the training
data to learn the model and gathered statistics on the test
set. The accuracy, precision, recall and F1 Score on test
set are reported in Table 3 when using 10% and 100%
of the training set. The hybrid loss outperforms both the
hinge loss and the log loss (albeit marginally).

5.2.2 baseNP Chunking

A similar methodology to the previous experiment is ap-
plied to the BaseNP data set [11]. It has 900 sentences in
total and the task is to automatically classify a chunking
phrase is as baseNP or not. We split the data into 3 parts:
training (20%), testing (40%) and validation (40%). Once
again, λ and α are determined via model selection on
the validation set. We report the test accuracy, precision,
recall and F1 Score in Table 3 for training on increasing
proportion of the training set. The hybrid outperforms
the other two losses on all measures.

5.2.3 Japanese named entity recognition
Finally, we used a multiclass data set containing 716
Japanese sentences and 17 annotated named entities [11].
The task is to locate and classify proper nouns and nu-
merical information in a document into certain classes of
named entities such as names of persons, organizations,
and locations. We train all 3 models on 216 sentences
and test on 500 sentences with the default parameters
found in Bottou’s CRF code. The extra parameter α is
selected for the smallest test error. The result is reported
in Table 4. Once again, the hybrid loss outperforms the
others two losses.

5.2.4 Joint Image Object Categorization
Our final experiment is joint image categorization. The
task is to categorize pre-segmented image areas by con-
sidering their dependency across the image segments.
We use the well-known Corel dataset [21], which has
100 images and 7 classes: hippo, polar bear, water, snow,
vegetation, ground, and sky. This is a very challenging task
since there are 7n many possible labels for an image with
n segments.

The ground truth segmentations provided from the
dataset are used as pre-segmented object regions. There-
fore each image contains one or multiple objects/regions.
We use 56 images for training, and 20 images for testing.
The rest images are excluded for too small or too many
objects. The graphical model of an images is shown
in Figure 6, where each segment is a node and edges
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TABLE 3
Accuracy, precision, recall and F1 Score on the baseNP chunking task for training on increasing portions of training

set.

Train Portion Loss Accuracy Precision Recall F1 Score
Hinge 88.48 71.70 75.96 73.77

0.1 Log 90.86 81.09 78.96 80.01
Hybrid 90.90 81.23 79.09 80.15
Hinge 94.64 87.58 88.30 87.94

1 Log 95.21 90.07 88.89 89.48
Hybrid 95.24 90.12 88.98 89.55

TABLE 4
Accuracy, precision, recall and F1 Score on the Japanese named entity recognition task.

Loss Accuracy Precision Recall F1 Score
Hinge 95.63 73.24 64.37 68.52
Log 95.92 78.22 64.85 70.91
Hybrid 95.95 79.02 65.32 71.52

TABLE 5
Image object categorization. SVM-Linear: non-structured SVM using Linear kernel. SVM-RBF: non-structured SVM

using RBF kernel. SVM-Struct: structured SVM using Linear kernel; CRF: CRF on sparse graph using MAP estimator
with LBP inference. Hybrid: our structured hybrid model on sparse graph.

Dataset |Y | SVM-linear SVM-RBF SVM-Struct CRF Hybrid
Corel 7n 58.62 65.52 89.66 86.21 89.66

(a) Raw image (b) Segmentation (c) Objects (d) Features

Fig. 6. An illustration of the image objects, graph and features. (a) The raw hippo image. (b) The segmentation result.
(c) The objects. (d) Node and edge features: node feature encodes the object characteristics, while the edge feature
encodes the interaction between objects.

capture the adjacency dependency.
5.2.4.1 Features: Any image with n segments and

labels is represented as (x, y) = {(xi, yi)}ni=1, where xi

and yi are the i-th segment and corresponding label. We
assume that global feature φ(x, y) is decomposed over
singleton terms φi(xi, yi), ∀i, 1 ≤ i ≤ n, as well as over
pairwise terms φij(xi, yi), ∀(i, j) ∈ Ax, where Ax is the
set of adjacent segments in x

φ(x, y) =
∑
i

φi(x
i, yi) +

∑
(i,j)∈A

φij(x
i, yi, yj). (11)

We assume φi is composed by a tensor product of
instance and label feature functions, given by φi(x, y) =
ϕi(x) ⊗ yi where ϕi is the raw node feature depend-
ing only on the observed segmented image. Similarly
φij(x, y) = ϕij(x) ⊗ yij , where ϕij is the raw edge
feature depending only on the observation as well, and
yij := [yi yj ]. ϕi and ϕij are assembled from

ϕ1 We extract a well known texton feature vec-
tor [23] from each patch, hence every pixel
is represented by a texton vector. The node

feature for an object is the empirical mean of the
texton vector of pixels. The raw node feature
ϕi(x) = [1 ϕ1(xi)].

ϕ2 We use the mean of the boosted texton probabil-
ity density of all interior and boundary pixels of
the objects as their edge feature. The raw edge
feature ϕij(x) = [1 ϕ2(xi) ϕ2(xj)].

As shown in Figure 6, the graph model is very general.
Exactly computing CRF gradient involving computing
an expectation is NP hard. The common way is to run
approximation such as Loopy Belief Propagation (LBP)
or sampling. We use LBP for CRF here. All structured
algorithms use the same node and edge features. Non-
structured algorithms use the node feature only. As
shown in Table 4, structured algorithms outperform the
non-structured ones as expected. And it is interesting to
see that structured SVM outperforms CRF. We conjecture
that is because CRF decision hyperplane becomes less
accurate due to approximated gradient (i.e., the expecta-
tion of the feature). Whereas structured SVM needs only
an argmax operation which is more efficient and perhaps
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more reliable.

6 CONCLUSION AND DISCUSSION

We have provided theoretical and empirical motivation
for the use of a novel hybrid loss for multiclass and struc-
tured prediction problems which can be used in place of
the more common log loss or multiclass hinge loss. This
new loss attempts to blend the strength of purely dis-
criminative approaches to classification, such as Support
Vector machines, with probabilistic approaches, such as
Conditional Random Fields. Theoretically, the hybrid
loss enjoys better consistency guarantees than the hinge
loss while experimentally we have seen that the addi-
tion of a purely discriminative component can improve
accuracy when data is less prevalent.

6.1 Future Work
Theoretically, we expect that some stronger sufficient
conditions on α are possible since the bounds used to
establish Theorem 1 are not tight. Our conjecture is
that a necessary and sufficient condition would include
a dependency on the number of classes. We are also
investigating connections between α and the multiclass
Tsybakov noise condition [6].

To our knowledge, the notion of a regular function
class for the purposes of consistency analysis is a novel
one. Characterisations of this property for various exist-
ing parametric models would make testing for regularity
easier.

One current limitation of the hybrid model is the use
of a single, fixed α for all observations in a training
set. One interesting avenue to explore would be trying
to dynamically estimate a good value of α on a per-
observation basis. This may further improve the efficacy
of the hybrid loss by exploiting the robustness of SVMs
(low α) when the label distribution for an observation
has a dominant class but switching to probability esti-
mation via CRFs (high α) when this is not the case.

For the future work of the plant task, we would
like to classify finer parts of the plant such as stem,
leaf, leaf tip and so on. The labels of these parts have
strong dependency of the label assignments on their
neighbouring parts. Hence treating it as a structured
prediction problem might produce superior result. How
to efficiently learn such a complex model with a stable
and consistent prediction is future work.
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APPENDIX A
PROOF FOR PAC-BAYES BOUNDS

For explicitly, we rewrite M and py as M(x, y;w) and p(y|x;w) when they are parameterized by w.

Lemma 5 (PAC-Bayes bound[19, 9]): For any data distribution D, for any prior P and posterior Q over w, for any
δ ∈ (0, 1], for any loss `. With probability at least 1− δ over random sample S from D with m instances, we have

R(Q, `) ≤ RS(Q, `) +

√
KL(Q||P ) + ln( 1

δ Es∼Dm Ew∼P e2m(R(Q,`)−RS(Q,`))2)

2m
,

where KL(Q||P ) := Ew∼Q ln(Q(w)
P (w) ) is the Kullback-Leibler divergence between Q and P , and R(Q, `) =

EQ,D[`(x, y;w)], RS(Q, `) = EQ
∑m
i=1 `(xi,yi;w)

m .

Theorem 6 (Bound on Averaging classifier): For any data distribution D, for any prior P and posterior Q over w,
for any δ ∈ (0, 1] and α ∈ [0, 1) and for any γ ≥ 0. With probability at least 1 − δ over random sample S from D
with m instances, we have

EQ,D
[
[γ −M(x, y;w)]+

]
≤ 1

m
EQ
[ m∑
i=1

[γ −M(xi, yi;w)]+

]

+
α

1− α

√
1

m
+

1

1− α

√
KL(Q||P ) + lnA(α) + ln 1

δ(1−e−2)

2m
,

where KL(Q||P ) := Ew∼Q ln(Q(w)
P (w) ) is the Kullback-Leibler divergence between Q and P , and

R(α) = αEQ,D
[
− ln p(y|x;w)

]
+ (1− α)EQ,D

[(
γ −M(x, y;w)

)
+

]
,

RS(α) = EQ
[
α

∑m
i=1− ln p(yi|xi;w)

m
+ (1− α)

∑m
i=1

(
γ −M(xi, yi;w)

)
+

m

]
,

A(α) = Es∼Dm Ew∼P e2m(R(α)−RS(α))2 .

Proof: Since ED
(
EQ
[∑m

i=1− ln p(yi|xi;w)

m

])
= EQ,D

[
− ln p(y|x;w)

]
, by Chernoff bound we have

PS∼Dm
(
EQ
[∑m

i=1− ln p(yi|xi;w)

m

]
− EQ,D

[
− ln p(y|x;w)

]
< ε

)
> 1− e−2mε2 .

Define B(S) := EQ
[∑m

i=1− ln p(yi|xi;w)

m

]
− EQ,D

[
− ln p(y|x;w)

]
.
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Applying Lemma 5 for R(α) and RS(α), we have for any P,Q

δ >PS∼Dm

R(α) ≥ RS(α) +

√
KL(Q||P ) + ln 1

δ + lnA(α)

2m


≥PS∼Dm

R(α) ≥ RS(α) +

√
KL(Q||P ) + ln 1

δ + lnA(α)

2m
,B(S) < ε


≥PS∼Dm

(1− α)EQ,D
[(
γ −M(x, y;w)

)
+

]
≥ (1− α)

∑m
i=1

(
γ −M(xi, yi;w)

)
+

m

+αε+

√
KL(Q||P ) + ln 1

δ + lnA(α)

2m
,B(S) < ε


=PS∼Dm

(1− α)EQ,D
[(
γ −M(x, y;w)

)
+

]
≥ (1− α)

∑m
i=1

(
γ −M(xi, yi;w)

)
+

m

+αε+

√
KL(Q||P ) + ln 1

δ + lnA(α)

2m

∣∣∣B(S) < ε

PS∼Dm
(
B(S) < ε

)

≥ PS∼Dm

(1− α)EQ,D
[(
γ −M(x, y;w)

)
+

]
≥ (1− α)

∑m
i=1

(
γ −M(xi, yi;w)

)
+

m

+αε+

√
KL(Q||P ) + ln 1

δ + lnA(α)

2m

PS∼Dm
(
B(S) < ε

)
Divide two sides by PS∼Dm

(
B(S) < ε

)
, we get

PS∼Dm

(1− α)EQ,D
[(
γ −M(x, y;w)

)
+

]
≥ (1− α)

∑m
i=1

(
γ −M(xi, yi;w)

)
+

m

+αε+

√
KL(Q||P ) + ln 1

δ + lnA(α)

2m

 ≤ δ

PS∼Dm
(
B(S) < ε

) ≤ δ

1− e−2mε2
.

Let ε =
√

1
m , and then let δ′ = δ

1−e−2m(ε2)
= δ

1−e−2 , we get δ = 1
δ′(1−e−2) . The theorem follows by substituting δ with

δ′ and dividing by (1− α) on both sides of the inequality inside of the probability.


